Жало hakko t12 распиновка. Набор для сборки паяльной станции на жалах Hakko T12

Электронные компоненты чувствительны к высоким температурам. Это значит, что для каждого компонента существует температура, выше которой не следует его нагревать.

Перегрев компонента может произойти как во время работы устройства, так и в процессе пайки. К перегреву во время работы ведёт множество причин, которые сегодня нас не интересует, так как разговор пойдёт о пайке и паяльниках.

Что такое пайка?

Па́йкой называют метод неразъемного соединения нескольких деталей с помощью металла с более низкой температурой плавления, чем соединяемые детали.

Когда припой нагревают до температуры плавления, то он растекается по повехности соединяемых деталей, обволакивает выступы и заполняет промежутки между ними. После остывания припоя образуется прочное соединение. Пайка позволяет соединять детали из разных металлов. Главное, чтобы эти металлы смачивались припоем.

Например, оловянно-свинцовым припоем хорошо смачиваются драгоценные металлы, медь, никель, латунь, бронза и плохо смачиваются сталь, алюминий, чугун, железо. Поэтому для качественной пайки надо обязательно правильно подбирать припой.

Припои

При производстве электроники используются оловянно-свинцовые и безсвинцовые припои. Очевидный минус оловянно-свинцовых припоев - это свинец. Безсвинцовые припои свинец в своем составе не имеют, но менее токсичными они от этого не стали. К тому же безсвинцовые припои страдают от образования оловянных "усов" . Так что если вы всё еще думаете, что ROHS предназначена для улучшения экологии, то это не так. Я бы предположил, что директива служит для маскировки снижения времени жизни эл. устройств массового производства.

В припой могут дополнительно входить кадмий, висмут, сурьма, цинк, медь. Их включают в состав припоя с целью придания ему дополнительных свойств. Кадмий, чтобы повысить антикоррозийные качества. Сурьма для придания глянца. Припои с цинком используют там, где поверхность пайки подвергается воздействию влаги. И т.д.

Припои также делятся по температуре плавления на легкоплавкие и тугоплавкие. Температура после которой припои считаются тугоплавкими равна 450 С о. Среди радиолюбителей наиболее распространены оловянно-свинцовые припои ПОС-40 и ПОС-60. Числа 40 и 60 означают процентное содержание олова в припое. Чем меньше цифра, тем выше температура плавления припоя.

Паяльные флюсы

Для качественного припаивания компонента к дорожке печатной платы одного припоя мало, так как спаиваемые поверхности окисляются, а окислы портят качество пайки. Для устранения окислов со спаиваемых поверхностей используют флюсы - вещества, снимающие окислы и жиры, улучшающие смачиваемость.

Применение хорошего флюса позволяет облегчить процесс пайки, а также повысить её качество. Сами флюсы можно разделить на требующие смывки после завершения пайки и такие, которые смывания не требуют. Бессмывочные флюсы очень удобны для использования при пайке компонентов, под которые потом не подлезть. Такие как микросхемы в BGA корпусах

Инструменты для пайки

Главный инструмент - паяльник. Он бывает регулируемый, нерегулируемый, большой, маленький, индукционный или обычный. Для монтажа электронных компонентов вручную следует использовать регулируемые паяльники, которые быстро нагреваются до заданной теммпературы и поддерживают её в процессе пайки, когда тепло с жала передается припою, проводнику на плате и припаиваемому компоненту и оно остывает.

Среди радиолюбителей распространены клоны станций Hakko. Они в разы дешевле. Часто имеют на борту ещё и паяльный фен. Эти станции используют копию жала типа 900М. У копий этих жал есть родовая травма в виде воздушного зазора между нагревателем и внутренней поверхностью жала. В оригинальном жале зазор тоже есть, но он рассчитан так, что в процессе нагрева зазор исчезнет за счет теплового расширения металла, а в копиях это не учитывается. В итоге получилась плохая копия, так как жало долго греется и быстро остывает при пайке массивных элементов. Об этих жалах уже речь вестись не будет.

На смену жалам типа 900М пришли жала-картриджи Т12, которые не имеют проблемы с воздушным зазором. Они выпускаются 84 видов. Я рассмотрю самые интересные и ходовые.

Как устроены жала Т12

Особенность такого жала заключается в его строении: капсула, внутри которой максимально близко к наконечнику расположен датчик температуры. Станция снимает с датчика информацию о температуре наконечника и с помощью PID-регулятора автоматически коректирует подачу энергии на нагревательный элемент.

Виды жал Т12

Оригинальным разработчиком этих жал явлется японская компания Hakko. Она выпускает много интересных инструментов. Одних только серий жал больше 30 видов. Одна из них - это серия Т12, получившая широкое распространение за счет того, что китайцы стали массово клепать эти жала и продавать по бросовым ценам.

На картинке выше приведены примеры типов жал Т12. Самые ходовые: BCM/СМ, BC/С, B, D, I, J, K. Жала вида SMD TYPE Quad/Tunnel совсем уж экзотические в быту радиолюбителя. Теперь давайте разбираться для каких целей какие жала предназначены.

Тип T12-K

Жало в форме ножа. Одно из самых универсальных жал, так как им можно пользоваться по-разному и работать либо кончиком, либо плоской частью с левой или правой стороны, либо торцом. Выбор способа использования зависит от условий пайки.

Длина среза составляет 6.65 мм. Таким жалом можно подлезть в узкие промежутки между компонентами, припаивать сразу несколько выводов компонентов, лудить площадки печатной платы или провода. T12-K бывает с заточкой справа: T12-K , T12-KR , T12-KRZ; слева: T12-KL; двусторонней: T12-KF , T12-KFZ , T12-KU . Все китайские жала имеют на самом деле двустороннюю заточку.

Индекс U в маркировке означает уменьшенный диаметр жала. Это понижает его теплоемкость. Индекс Z говорит о том, что жало имеет более толстое покрытие. Такое жало будет служить дольше.

Тип T12-BC/C

BC в маркировке означает, что жало имеет форму усеченного конуса, а С обозначает жало в форме усеченного цилиндра. Разница между ними заключается в их теплоемкости. У жал ВС она больше.

Есть еще вариации этих жал: BCF/CF и BCM/CM . Жала с индексом F имеют рабочую поверхность только на срезе, а с индексом M имеют небольшую выемку на срезе жала, что позволяет жалу удерживать каплю припоя и пайка будет делаться миниволной. Все жала типа BC/C бывают диаметров от 0.8мм до 4.2мм.

Жала типа BC/C предназначены для пайки теплоемких компонентов и выводов между которыми достаточное расстояние, чтобы не посадить соплю. Hakko также рекомендует использовать эти жала для пайки чип-компонентов, так как они позволяют формировать правильную галтель паянного соединения (solder fillet ).

Га́лтель (от нем. Hohlkehle — желобок, выемка) — форма поверхности в виде желобка, выемки на внешнем или внутреннем ребре детали.

При пайке компонентов поверхностного монтажа правильно выполненые паяные соединения имеют вогнутую форму, что обеспечивается объемом припоя и процессом смачивания контактных поверхностей. Такая форма обеспечивает минимальный расход припоя, а также наилучшие условия для равномерного затвердевания с образованием прочного бездефектного соединения.

Часто под термином "галтель паяного соединения" понимают само паяное соединение или объем припоя в соединении.

Тип T12-D

Этот вид жала выглядит как обычная плоская отвертка. Работать таким жалом можно как лицевой стороной, так и торцевой.

Выпускается более 10 подвидов T-12D с шириной кончика от 0.5 мм до 1.2 мм. От чего изменяется его теплоемкость. Самой малой теплоемкостью обладает жало с шириной 0.5мм

Большинство из радиолюбителей к таким жалам привычно, так как на обычных паяльниках жала имеют схожую форму. Выпускается еще два варианта таких жал: с увеличенным сроком службы (long life) и высокопроизводительные с повышенной теплоотдачей (heavy duty).

Индекс W ставится у высокопроизводительного жала, индекс L обозначает, что жало имеет удлиненный кончик. Например, T12-DL. Такие жала имеют теплоеммкость даже больше жал с индексом W

Я рассказал о наиболее ходовых, на мой взгляд, жалах. Сам пользуюсь жалами T12-B2, T-12K. Кстати, при установке в паяльную станцию новые жала следует откалибровать. Многие станции позволяют калибровать жала и сохранять "профиль жала", чтобы при замене одного жала другим можно было переключить профиль и не калибровать жало заново.

Читая местные обзоры, уже не раз подумывал о покупке паяльника с жалом T12. Давно хотелось чего-то портативного с одной стороны, достаточно мощного с другой стороны, и, разумеется, нормально поддерживающего температуру.
У меня есть относительно много паяльников, купленных в разные времена и под разные задачи:
Есть совсем древние ЭПСН-40 и «москабель» 90Вт, чуть более новый ЭМП-100 (топорик), совсем новый китайский TLW 500W. Последние два особенно хорошо сохраняют температуру (даже при пайке медных труб), но вот паять ими микросхемы не очень удобно:). Попытка использования ZD-80 (пистолетик с кнопкой) не вышла - ни мощности, ни нормального поддержания температуры. Прочая «электронная» мелочь типа Antex cs18/xs25 годится только для совсем мелочей, да и встроенной регулировки не имеет. Лет 15 назад пользовался den-on"овским ss-8200, но жала там совсем малюсенькие, термодатчик далеко и градиент температуры огромен - несмотря на заявленные 80W, на жале по ощущениям и трети не будет.
В качестве стационарного варианта я уж лет 10 использую Lukey 868 (это практически 702, только нагреватель керамический и еще какие-то мелочи). Но портативности в ней нет никакой, с собой в карман или мелкую сумку никак не взять.
Т.к. на момент покупки я еще не был уверен «а нужно ли мне оно», был взят минимальный бюджетный вариант с K-жалом и ручкой, максимально похожей на привычный паяльник от Lukey. Возможно, что кому-то она кажется не очень удобной, но для меня важнее, что-бы ручки обоих используемых паяльников привычно и одинаково лежали в руке.
Дальнейший обзор можно будет условно разделить на две части - «как из запчастей сделать устройство» и попытка анализа «как это устройство и прошивка контроллера работают».
К сожалению, продавец убрал именно этот SKU, поэтому могу дать только ссылку на снимок товара из журнала заказов. Впрочем, нет никаких проблем найти аналогичный товар.

Часть 1 - конструкция

После макетной проверки работоспособности, встал вопрос о выборе конструкции.
Имелся почти подходящий блок питания (24v 65W), высотой практически 1:1 с платой управления, чуть уже ее и длиной около 100мм. Учитывая, что этот блок питания питал какую-то сдохшую (не по его вине!) связную и не дешевую lucent-овскую железку, а в его выходном выпрямителе стоят две диодные сборки на суммарные 40А, я решил, что он не сильно хуже распространенного здесь китайца на 6A. Заодно и валяться не будет.
Тестовая проверка на проверенном временем эквиваленте нагрузки (ПЭВ-100, выкручен на примерно 8 Ом)


показала, что БП практически не греется - за минут 5 работы ключевой транзистор, несмотря на свой изолированный корпус, нагрелся градусов до 40 (чуть теплый), диоды потеплее (но руку не обжигает, держать вполне комфортно), а напряжение по прежнему 24 вольта с копейками. Выбросы увеличились до сотни милливольт, но для данного напряжения и этого применения сие вполне нормально. Собственно, я остановил опыт из-за нагрузочного резистора - на его меньшей половине выделялось около 50W и температура перевалила за сотню.
В результате минимальные габариты были определены (БП + плата управления), следующим этапом шел корпус.
Поскольку одним из требований была портативность, вплоть до возможность распихать по карманам, вариант с готовыми корпусами отпал. Доступные универсальные пластмассовые корпуса совсем не годились по размерам, китайские алюминиевые корпуса под T12 для карманов куртки тоже великоваты, да и ждать еще месяц не хотелось. Вариант с «напечатанным» корпусом не проходил - ни прочности, ни теплостойкости. Прикинув возможности и вспомнив пионерскую молодость, решил сделать из древнего одностороннего фольгированного стеклотекстолита, валяющегося еще со времён СССP. Толстенная фольга (микрометр на тщательно разглаженном кусочке показал 0.2мм!) все равно не позволяла травить дорожки тоньше миллиметра из-за бокового подтравливания, а для корпуса - самое то.
Но лень вкупе с нежеланием пылить категорически не одобрила распиловку ножовкой или резаком. После прикидки имеющихся технологических возможностей, решил попробовать вариант распиловки текстолита на электрическом плиткорезе. Как оказалось - в высшей степени удобный вариант. Диск режет стеклотекстолит без всяких усилий, кромка получается практически идеальная (с резаком, ножовкой или лобзиком даже не сравнить), ширина по длине реза тоже одинаковая. И, что немаловажно, вся пыль остается в воде. Понятно, что если нужно отпилить один маленький кусочек, то разворачивать плиткорез слишком долго. Но даже на этот маленький корпус нужно было под метр реза.
Далее был спаян корпус с двумя отделениями - одно под блок питания, второе для платы управления. Первоначально, я не планировал разделение. Но, как и при сварке, припаянные в угол пластины при остывании стремятся уменьшить угол и дополнительная перепонка очень полезна.
Передняя панель согнута из алюминия в форме буквы П. В верхнем и нижнем отгибе нарезана резьба для фиксации в корпусе.
В результате получился такое (с устройством я до сих пор «играюсь», поэтому покраска пока очень черновая, из остатков старого балончика и без шлифовки):

Габаритные размеры самого корпуса - 73 (ширина) x 120 (длина) x 29 (высота). Ширину и высоту сделать меньше нельзя, т.к. размеры платы управления 69 x 25, да и найти более короткий блок питания тоже не просто.
Сзади установлен соединитель под стандартный электропровод и выключатель:


К сожалению, черного микровыключателя в хламе не оказалось, надо будет заказать. С другой стороны - белый заметнее. А вот соединитель я специально ставил стандартным - это позволяет в большинстве случаев не брать с собой дополнительный провод. В отличие от варианта с ноутбучной розеткой.
Вид снизу:

Черный изолятор из резиноподобного материала остался от исходного блока питания. Он довольно толстый (чуть меньше миллиметра), теплостойкий и очень плохо режется (отсюда и грубый вырез для пластиковой распорки - чуть-чуть не влезало). По ощущениям - как асбест, пропитанный резиной.
Слева от блока питания - радиатор выпрямителя, справа - ключевого транзистора. В оригинальном БП радиатором была тонкая полоска алюминия. Я решил «усугубить» на всякий случай. Оба радиатора изолированы от электроники, поэтому могут свободно прилегать к медным поверхностям корпуса.
На перепонке смонтирован дополнительный радиатор для платы управления, контакт с d-pak корпусами обеспечивается термопрокладкой. Пользы не много, но все лучше воздуха. Что бы исключить замыкание, пришлось чуть обкусить выступающие контакты «авиационного» разъема.
Для наглядности - паяльник рядом с корпусом:

Результат:
1) Паяльник работает примерно как заявлено и вполне помещается в карманах куртки.
2) В старом хламе утилизированы и более не валяются: блок питания, кусок стеклотекстолита 40-летней давности, балончик с нитроэмалью 1987 года выпуска, микровыключатель и небольшой кусок алюминия.

Разумеется, с точки зрения экономической целесообразности существенно проще купить готовый корпус. Пусть материалы были и практически бесплатны, но «время-деньги». Просто в моем списке задач вообще не фигурировала задача «сделать дешевле».

Часть 2 - заметки о функционировании

Как можно заметить, в первой части я вообще не упомянул о том, как все это работает. Мне показалось целесообразным не смешивать описание своей личной конструкции (довольно «колхозно-самопальной» на мой взгляд) и функционирование контроллера, который идентичен или похож у многих.

В качестве некоторого предварительного предупреждения хочу сказать:
1) Разные контроллеры имеют несколько разную схемотехнику. Даже у внешне одинаковых плат могут быть немножко отличающиеся компоненты. Т.к. у меня имеется только одно мое конкретное устройство, я никак не могу гарантировать совпадение с другими.
2) Прошивка контроллера, которую я анализировал, не единственная имеющаяся. Она распространенная, но у Вас может стоять другая прошивка, функционирующая другим образом.
3) Я нисколько не претендую на лавры первооткрывателя. Многие моменты уже были ранее освещены другими обозревателями.
4) Дальше будет много скучных букв и ни одной веселой картинки. Если внутреннее устройство не интересует - остановитесь здесь.

Обзор конструкции

Дальнейшие выкладки будут во многом связаны со схемотехникой контроллера. Для понимания его работы точная схема не обязательно, вполне достаточно рассмотреть основные компоненты:
1) Микроконтроллер STC15F204EA. Ничем особо не выдающийся чип семейства 8051, заметно более быстрый, чем оригинал (оригинал 35 летней давности, да). Питается от 5В, имеет на борту 10-битный АЦП с коммутатором, 2x512байт nvram, 4KБ программной памяти.
2) Стабилизатор на +5В, состоящий из 7805 и мощного резистора для уменьшения тепловыделения(?) на 7805, сопротивлением 120-330 Ом (на разных платах разное). Решение в высшей степени бюджетное и тепловыделяющее.
3) Силовой транзистор STD10PF06 с обвязкой. Работает в ключевом режиме на низкой частоте. Ничего выдающегося, старый.
4) Усилитель напряжения термопары. Подстроечный резистор регулирует его усиление. Имеет защиту на входе (от 24В) и подключен на один из входов АЦП МК.
5) Источник опорного напряжения на TL431. Подключен на один из входов АЦП МК.
6) Датчик температуры платы. Также подключен к АЦП.
7) Индиктор. Подключен к МК, работает в режиме динамической индикации. Подозреваю, что один из основных потребителей +5В
8) Ручка управления. Вращение регулирует температуру (и другие параметры). Линия кнопки в очень многих моделях не запаяна или разрезана. Если соединить, то позволяет настраивать дополнительные параметры.

Как несложно заметить, все функционирование определяется микроконтроллером. Почему китайцы ставят именно такой - мне неизвестно, он не сильно дешевый (около $1, если брать несколько штук) и впритык по ресурсам. В типовой китайской прошивке остаются свободными буквально десяток байт памяти программ. Сама прошивка написана на С или чем-то аналогичном (там видны явные хвосты библиотеки).

Функционирование прошивки контроллера

Исходных текстов я не имею, но IDA никуда не делась:). Механизм работы довольно простой.
При начальном запуске прошивка:
1) инициализирует устройство
2) загружает параметры из nvram
3) Проверяет нажатость кнопки, если нажата - ждет отжатия и запускает п/п настройки расширенных параметров (Pxx) Там много параметров, если нет понимания, то лучше их не трогать. Могу выложить раскладку, но опасаюсь спровоцировать проблемы.
4) Выводит на экран «SEA», ждет и запускает основной цикл работы

Есть несколько режимов работы:
1) Обычный, нормальное поддержание температуры
2) Частичное энергосбережение, температура 200 градусов
3) Полное отключение
4) Режим настройки P10(шаг настройки температуры) и P4(усиление ОУ термопары)
5) Режим альтернативного управления

После запуска работает режим 1.
При коротком нажатии кнопки производится переход в режим 5. Там можно повернуть регулятор влево и уйти в режим 2 или вправо - увеличить температуру на 10 градусов.
При длительном нажатии производится переход в режим 4.

В предыдущих обзорах было много споров, как правильно устанавливать вибродатчик. По имеющейся у меня прошивке могу сказать однозначно - без разницы. Уход в режим частичного энергосбережения выполняется по отсутствию изменений состояния вибродатчика, отсутствию существенных изменений температуры жала и отсутствию сигналов от ручки - все это на протяжении 3х минут. Замкнут вибродатчик или разомкнут - совершенно неважно, прошивка анализирует только изменения в состоянии. Вторая часть критерия тоже интересна - если вы паяете, то температура жала неминуемо плавает. И если фиксируется отклонение более чем на 5 градусов от заданной, выхода в режим энергосбережения не будет.
Если режим энергосбережения продлится больше заданного, то паяльник полностью выключится, на индикаторе будут нули.
Выход из энергосберегающих режимов - по вибрации или по ручке управления. Возврата из полного энергосбережения в частичный не бывает.

Поддержанием температуры МК занимается в одном из таймерных прерываний (их задействовано два, второе занимается дисплеем и прочим. Зачем так сделано непонятно - интервал прерывания и другие настройки выбраны одинаковые, вполне можно было обойтись единым прерыванием). Цикл управления состоит из 200 таймерных прерываний. На 200-м прерывании нагрев обязательно отключается (- целые 0.5% мощности!), выполняется задержка, после чего производится измерение напряжений с термопары, термодатчика и опорного напряжения с TL431. Далее все это по формулам и коэффициентам (частично задаваемым в nvram) пересчитывается в температуру.
Здесь я позволю себе маленькое отступление. Зачем в такой конфигурации термодатчик - не вполне понятно. При правильной организации, он должен давать поправку температуры на холодном спае термопары. Но в этой конструкции он измеряет температуру платы, не имеющую никакого отношения к требуемой. Его либо нужно переносить в ручку, как можно ближе к картриджу T12 (и еще вопрос - в каком месте картридже находится холодный спай термопары), либо вовсе выкинуть. Возможно, я чего-то не понимаю, но похоже, что китайские разработчики тупо передрали схему компенсации с какого-то другого устройства, совершенно не понимая принципов работы.

После измерения температуры вычисляется разница между заданной и текущей температурой. В зависимости от того, большая она или маленькая работают две формулы - одна большая, с кучей коэффициентов и накоплением дельты (желающие могут почитать про построение ПИД-регуляторов), вторая проще - при больших отличиях нужно либо греть максимально, либо полностью отключить (в зависимости от знака). Переменная ШИМ может иметь значение от 0 (отключено) до 200 (полностью включено) - по количеству прерываний в цикле управления.
Когда я только включил устройство (и еще не залез в прошивку), меня заинтересовал один момент - не было дрожания на ± градус. Т.е. температура либо держится стабильно, либо дергается сразу на 5-10 градусов. После анализа прошивки выяснилось, что дрожит оно по всей видимости всегда. Но при отклонении от заданной температуры менее чем на 2 градуса прошивка показывает не измеренную, а заданную температуру. Это ни хорошо и не плохо - дрожащий младший разряд тоже сильно раздражает - просто нужно иметь в виду.

Завершая разговор о прошивке хочу отметить еще несколько моментов.
1) С термопарами я не работал уже лет 20. Может за это время они стали линейнее;), но раньше для сколько-нибудь точных измерений и при наличии возможности, всегда вводилась функция корректировки нелинейности - формулой или таблицей. Здесь этого нет от слова совсем. Можно настроить только смещение нуля и угол наклона характеристики. Может во всех картриджах используются высоколинейные термопары. Либо индивидуальный разброс в разных картриджах больше, чем возможная групповая нелинейность. Хотелось бы надеяться на первый вариант, но опыт намекает на второй…
2) По непонятной для меня причине, внутри прошивки температура задается числом с фиксированной точкой и разрешением в 0.1 градус. Совершенно очевидно, что в силу предыдущего замечания, 10-битного АЦП, неверной поправки холодного конца, неэкранированного провода и т.п. реальная точность измерений и 1 градус никак не составит. Т.е. похоже, что опять содрано с какого-то другого устройства. А сложность вычислений чуть выросла (неоднократно приходится делить/умножать на десять 16-разрядные числа).
3) На плате имеются контактные площадки Rx/TX/gnd/+5v. Насколько я понял, у китайцев были специальные прошивки и специальная китайская программа, позволяющая напрямую получать данные со всех трех каналов АЦП и настраивать параметры ПИД. Но в стандартной прошивке ничего этого нет, выводы предназначены исключительно для заливки прошивки в контроллер. Программа для заливки доступна, работает через простой последовательный порт, только TTL-уровни нужны.
4) Точки на индикаторе имеют свой функционал - левая индицирует режим 5, средняя - наличие вибрации, правая - тип выводимой температуры (выставленная или текущая).
5) Для записи выбранной температуры отведено 512 байт. Сама запись сделана грамотно - каждое изменение пишется в следующую свободную ячейку. Как только достигнут конец - блок полностью стирается, а запись производится в первую ячейку. При включении берется самое дальнее записанное значение. Это позволяет увеличить ресурс в пару сотен раз.
Владелец, помни - вращая ручку настройки температуры, ты тратишь невосполнимый ресурс встроенного nvram!
6) Для остальных настроек используется второй блок nvram

С прошивкой все, если возникнут дополнительные вопросы - задавайте.

Мощность

Одна из важных характеристик паяльника - максимальная мощность нагревателя. Оценить ее можно следующим образом:
1) Имеем напряжение 24В
2) Имеем жало Т12. Измеренное мной сопротивление жала в холодном состоянии составляет чуть более 8 Ом. У меня получилось 8.4, но я не берусь утверждать, что погрешность измерения менее 0.1 Ома. Предположим, что реальное сопротивление никак не менее 8.3 Ома.
3) Сопротивление ключа STD10PF06 в открытом состоянии (по даташиту) - не более 0.2 Ома, типовое - 0.18
4) Дополнительно нужно учесть сопротивление 3х метров провода (2x1.5) и разъема.

Итоговое сопротивление цепи в холодном состоянии составляет не менее 8.7 Ома, что дает предельный ток в 2.76А. С учетом падения на ключе, проводах и разъеме, напряжением на самом нагревателе будет около 23В, что даст мощность порядка 64 Вт. Причем это предельная мощность в холодном состоянии и без учета скважности. Но не стоит особо расстраиваться - 64 Вт это весьма много. А учитывая конструкцию жала - достаточно для большинства случаев. Проверяя работоспособность в режиме постоянного нагрева, я помещал кончик жала в кружку с водой - вода вокруг жала кипела и пАрила весьма бодро.

Но вот попытка экономии с использованием БП от ноутбука имеет очень сомнительную эффективность - внешне незначительное снижение напряжения, приводит к потере трети мощности: вместо 64 Вт останется порядка 40. Стоит ли этого экономия $6?

Если наоборот, попытаться выжать из паяльника заявленные 70Вт, есть два пути:
1) Немного увеличить напряжение БП. Достаточно увеличить всего на 1В.
2) Уменьшить сопротивление цепи.
Почти единственный вариант, как немного уменьшить сопротивление цепи - заменить ключевой транзистор. К сожалению, практически все p-канальные транзисторы в используемом корпусе и на требуемое напряжение (на 30В я не рискнул бы ставить - запас будет минимален) имеют сходные Rdson. А так было бы вдвойне замечательно - заодно меньше бы грелась плата контроллера. Сейчас в режиме максимального разогрева на ключевом транзисторе выделяется около ватта.

Точность/стабильность поддержания температуры

Кроме мощности, не менее важна стабильность поддержания температуры. Причем лично для меня стабильность даже важнее точности, поскольку если значение на индикаторе можно и опытным путем подобрать - обычно я так и делаю (и не очень важно, что при выставке 300 градусов реально на жале - 290), то вот нестабильность таким образом не побороть. Впрочем, по ощущениям, стабильность поддержания температуры на T12 заметно лучше, чем на жалах 900-й серии.

Что имеет смысл переделать в контроллере

1) Контроллер греется. Не фатально, но больше желаемого. Причем главным образом его греет даже не силовая часть, а стабилизатор на 5В. Измерения показали, что ток по 5В составляет порядка 30 мА. 19В падения при 30 мА дает примерно 0.6Вт постоянного нагрева. Из них на резисторе (120Ом) выделяется порядка 0.1Вт и еще 0.5Вт - на самом стабилизаторе. Потребление остальной схемы можно игнорировать - всего 0.15Вт, из которой заметная часть тратится на индикатор. Но плата маленькая и поставить step-down просто некуда - если только на отдельной платке.

2) Силовой ключ с большим (относительно большим!) сопротивлением. Применение ключа с сопротивлением 0.05 Ом сняло бы все проблемы его нагрева и добавило бы около ватта мощности нагревателю картриджа. Но корпус был бы уже не 2х миллиметровый dpak, а минимум на размер больше. Или вообще переделать управление на n-канал.

3) Перенос ntc в ручку. Но тогда имеет смысл перенести туда и микроконтроллер, и силовой ключ и опорное напряжение.

4) Расширение функциональности прошивки (несколько наборов параметров ПИД для разных жал и т.п.). Теоретически возможно, но лично мне проще (и дешевле!) заново слепить на каком-нибудь младшем stm32, чем утаптывать в существующую память.

В результате имеем замечательную ситуацию - переделывать можно много чего, но практически любая переделка требует выкинуть старую плату и сделать новую. Либо не трогать, к чему я и склоняюсь пока.

Заключение

Имеет ли смысл переходить на T12? Не знаю. Пока я работаю только с жалом T12-K. Для меня оно одно из самых универсальных - и полигон хорошо греет, и гребенку выводов эрзац-волной пропаять/отпаять можно, и отдельный вывод острым концом прогреть можно.
C другой стороны, имеющийся контроллер и отсутствие средств автоматической идентификации конкретного типа жала усложняет работу с T12. Ну что мешало Hakko засунуть какой-нибудь идентифицирующий резистор/диод/чип внутрь картриджа? Было бы идеально, если в контроллере имелось несколько слотов под индивидуальные настройки жал (хотя-бы штуки 4) и при смене жала он автоматом загружал нужные. А в существующей системе можно как максимум сделать ручной выбор жала. Прикидывая объем работ понимаешь, что овчинка не стоит выделки. Да и картриджи по стоимости соизмеримы с целой паяльной станцией (если не брать китай по $5). Да, разумеется можно экспериментально вывести таблицу поправок температур и приклеить табличку на крышку. Но с коэффициентами ПИД (от которых напрямую зависит стабильность) так не поступить. От жала к жалу они обязаны отличаться.

Если отбросить мысли-мечты, то выходит следующее:
1) Если паяльной станции нет, но хочется - лучше забыть про 900 и брать T12.
2) Если нужно дешево и точные режимы пайки не сильно нужны - лучше взять простой паяльник с регулировкой мощности.
3) Если паяльная станция на 900х уже есть, то достаточно T12-К - универсальность и портативность получилась на высоте.

Лично я покупкой доволен, но и заменять все имеющиеся 900-е жала на T12 пока не планирую.

Это первый мой обзор, поэтому заранее приношу извинения за возможные шероховатости.

Всем доброго времени суток. Извечная борьба с жабой заставляет людей совершать непредсказуемые поступки. Так случилось и в этот раз, и вместо готовой паяльной станции я приобрел набор «сделай сам». Что из этого получилось смотрим ниже.
Из обзоров на муське узнал о существовании жал-картриджей Hakko T12. Этот вопрос меня заинтересовал и начав изучать информацию, наткнулся на обозреваемый набор. Почитав обзоры и посмотрев несколько видео, понял, что в результате можно получить вполне неплохую паяльную станцию за небольшие деньги. Сразу сделаю небольшое отступление – для получения рабочей паяльной станции к этому набору необходимо ДОПОЛНИТЕЛЬНО ПРИОБРЕТАТЬ блок питания на 12-24В. Естественно, что 24В самый предпочтительный вариант, при котором потенциал картриджей T12 раскроется полностью.

Таблица с сайта продавца


Итак начнем - мне повезло и посылка пришла всего за 12 дней. Серый пакет обернутый скотчем в котором находилась картонная коробка, внутри мелкие детали в отдельных пакетиках. Все пришло целым.
Содержимое посылки:

  • Ручка паяльника - глянцевый пластик, качество посредственное. Попросил продавца положить синего цвета, по умолчанию в комплект входит черная ручка;
  • Провод 100см длиной, диаметр 5мм, силиконовый, термоустойчивый, не запоминает форму;
  • В первом пакетике - контроллер паяльной станции, светодиод красного цвета, вибродатчик SW200D и ручка энкодера;
  • Во втором - авиационный разьем;
  • В третьем - комплект для сборки внутренностей ручки паяльника;
  • Связка проводков, жгутов и кембриков;
  • Жало Т12-ВС2 также предварительно связывался с продавцом и просил заменить, т.к. по умолчанию в комплект ложится жало типа T12-K;
  • Подарочный пинцет сносного качества;
  • Записка от продавца с обещанием плюшек при последующих заказах))).
Ну что же, содержимое посылки пересмотрели со всех сторон, «обнюхали»), приступаем к сборке. Я начал сборку с внутренностей ручки. И если вы внимательно прочитали название обзора, то уже поняли что без паяльника здесь не обойтись. При сборке ручки есть несколько нюансов о которых я сейчас расскажу.
1. Есть разница как вы сориентируете половинки внутренностей между собой, сделать это нужно таким образом, что бы площадки для припаиваемых контактных «пластин-завитушек» находились напротив.


2. Методом проб и ошибок выяснил, что контактные пластины необходимо припаивать завитушками вовнутрь, это не очевидно из их формы, но поверьте мне - так будет лучше и, наверное, правильнее. Т.к. в этом случае они припаиваются просто посередине контактных площадок и затем без проблем контактируют с жалом в нужных местах.




При припаивании нижней части нужно сразу определиться с проводами и припаивать провода одновременно скрепляя внутренности ручки.

Схемы подключения:




Припаиваем емкость 104 (0,1 мкФ) и вибродатчик SW200D




Припаиваем провода со стороны авиационного разъема


Собираем ручку


Вот что получилось после сборки:


Теперь перейдем к рассмотрению контроллера. Размеры 67х24мм. Глубина вместе с энкодером 25мм, в корпусе выступает на 13мм.
А он у нас достаточно умный и кроме своих непосредственных обязанностей по регулировке и стабилизации температуры жала умеет засыпать и отключаться через некоторое количество времени (которое можно изменять).

Фото контроллера









Кроме того можно изменять настройки шага регулировки температуры и производить программную калибровку температуры. Эти параметры можно изменять непосредственно при работе паяльника - режимы Р10 и Р11. Делается это следующим образом - нажимаем на ручку энкодера и удерживаем примерно 2 секунды, попадаем в пункт Р10, кратковременным нажатием изменяем порядок (сотни, десятки, единицы), поворотом ручки изменяем значение, затем опять нажимаем и 2 с. удерживаем ручку энкодера, значение сохраняется, а мы попадаем в пункт Р11 и т.д., последующее 2с. нажатие возвращает в рабочий режим.
Но и это еще не все, если подать питание на контроллер при зажатой ручке энкодера, то можно попасть в более расширенное программное меню. В обсуждении одного из видеообзоров я нашел по нему следующую информацию:
P01 опорное напряжение АЦП 2490 мВ (эталон TL431)
P02 настройка NTC 32 сек
P03 вход ОУ коррекция напряжения смещения (55)
P04 усиления усилителя термопары (270)
P05 коэффициент пропорциональности PID pGain -64
P06 коэффициент интегрирования PID iGain- 2
P07 коэффициент дифференцирования PID dGain-16
P08 автоотключение после 3-50 минут
P09(P99) сброс настоек reset
P10 шаг установки температуры
P11 коэффициент усиления термопары (Калибровка температуры)
Калибровка температуры заняла у меня достаточно много времени но в результате удолось добиться вполне приемлемых результатов.

Замеры температуры жала






Дальнейшая сборка станции очень зависит от того какой блок питания вы решили использовать, здесь тоже есть один нюанс, при использовании блока питания на 19 В и выше необходимо отпаять резистор 101(100 Ом).


Также в контроллер припаивается светодиод и «папа» авиационного разъема.
Я использовал достаточно большой блок питания на 24В, 4А. Поэтому контроллер установил прямо в него. Получилось достаточно удобное и компактное устройство.

Характеристики блока питания


Готовая паяльная станция:


Жала T12 мой комплект. Очень интересно последнее фото, на нем отчетливо видно различие в логотипах жал заказанных в одном магазине в одно и то же время. Я исхожу из того, что оба жала - подделки. Но на работе это никак не сказывается. Возможно время покажет. Если есть специалисты интересно услышать ваше мнение.:






Сложно делать выводы относительно данного товара т.к у каждого получится паяльная станция со своими характеристиками мощности (в зависимости от блока питания) и внешним видом (в зависимости от фантазии, усердия и т.д.) Поэтому буду говорить только о том, что получилось у меня.
Плюсы:
1. Быстрый нагрев до рабочей температуры порядка 15 с. Лично мне скорость нагрева нравится больше всего. Включил и пока одной рукой берешь паяльник, а второй припой - уже можно паять.
2. Хорошая мощность - можно прогревать большие полигоны.
3. Сброс температуры до 200 градусов (засыпание) и самоотключение, через определенный промежуток времени.
4. Термоустойчивый провод, который можно записать и в минусы из-за массивности и некоторой упругости. Но для меня термоустойчивость перевешивает вышеописанные неудобства.
5. Если приловчиться, то можно менять жала не дожидаясь остывания, я приловчился - поэтому плюс)))
6. Ну и естественно к плюсам отнесем то удовольствие, которое получает человек делая что-то своими руками, особенно когда это что-то получилось и радует глаз.
Минусы:
Если придираться, то минусов тоже хватает, это и посредственное качество ручки и достаточно большой вылет жала. Но для себя я однозначно выделил только один.
1. «Из коробки» температура жала не соответствует действительности, пришлось немного повозиться, чтобы получить приемлемый результат. Но и после калибровки температура плавает: на высоких ниже, чем показывает контроллер, на низких наоборот - выше.

Вывод:
Если у вас есть ненужный блок питания и нет хорошего паяльника со стабилизацией температуры - однозначно брать. Но даже если рассматривать вопрос дополнительного приобретения блока питания получается вполне себе неплохой вариант.

Это мой первый обзор, писал преимущественно ночами в условиях недостаточной освещенности, поэтому фото получились не очень. Если есть вопросы пишите, чем смогу - помогу.

Продолжаем работу над паяльной станцией на основе паяльников fm-2028, fx-9501. И в этом довольно длинном видео (я предполагаю что оно будет очень длинное) первое, что я сделаю — проверю, соответствует ли мощность жал заявленным 70Вт, так же я поменяю китайские штекера на советские, чтобы не искать ответную часть под китайский, я поставлю советский. Советские, мне дали ответные части вместе со штекерами. Так же я нагрею это жало и посмотрю какое напряжение генерирует термопара в самом жале для того, чтобы определиться какой операционный усилитель использовать. Я планирую использовать дешёвый 358, так как я предполагаю что в паяльнике термопара К типа, и на высоких температурах (больше 100-150 С) напряжение которое генерирует термопара хватит для того чтобы 358 более менее нормально работал. И также, в самом конце, расскажу, что именно я хочу за паяльную станцию, какие там будут органы управления, как я вижу свою паяльную станцию. Чтобы вы могли посмотреть, послушать, и высказать своё мнение. Я вообще планирую что вы скажите устраивает она вас или не устраивает. Возможно, какие-то рекомендации и коррективы будут. Я обязательно их учту. Так как видео будет длинным, здесь внизу в описании под данным видео будут сразу ссылки, нажав на которые вы сразу перейдёте на нужную вам часть.

Итак, первое что нам нужно, рассчитать, какое сопротивление у данных паяльников должно быть для мощности 70 Вт при напряжении 24В. Для того чтобы выделилась мощность 70Вт при напряжении 24В, необходимо чтобы ток по цепи был следующий: 70/24=2,91А. Чтобы такой ток был при напряжении 24В, можем узнать какое должно быть сопротивление этого жала. 24/2.91=8.24Ом.


Китаец сказал, что он мне пришлёт новую жёлтую часть от паяльника fm-2028, из-за того, что жало T12 не вставлялось. Он сказал если хочешь — можешь просверлить, но если не знаешь как — я тебе пришлю новую. Я знаю как просверлить, но я когда услышал что он хочет мне новую прислать, я согласился, но не из-за того что там отверстие плохое, а из-за того, что вполне возможно, что новое будет нормально открываться, хотя я очень в этом сомневаюсь. Скоро ко мне приедет жёлтая часть))


Переключаем мульти метр на сопротивление, должно быть 8.24 Ом. У нас получается 9.1 Ом, у щупов сопротивление 0.3-0.4 Ом. Если честно, 70 Вт жала T12 не имеют, но очень близко к 70 Вт. Практически 70 Вт. Посмотрим теперь несколько жал T12 из комплекта, которые я купил у другого китайца. Я купил у него комплект из 10 шт. Я не хочу их вскрывать, я просто пробью пакет. 8.2, 8.4 то есть всё очень и очень близко. 8.8 ом — 0.3-0.4 как раз получается 8.4 другими словами очень близко к 8.2, поэтому можно сказать что в принципе эти жала T12 имеют свои 70 Вт.


Разбираем штекера паяльников и паяем советские.




Ну здесь всё должно быть на много проще. Как у советского штекера. Здесь вместо зелёного уже синий провод.


Мы это тоже нарисуем.


У разъёма всё очень сильно окислено, поэтому я немного отвёрткой зачищу, потому что не припаяется хорошо. Я запаяю следующим образом: в середину красный провод, слева синий либо зелёный, справа будет чёрный. В случае необходимости я поставлю перемычку на оставшиеся 2 свободных пина. И если вдруг у меня не получится программно определять подключен паяльник или нет, то я на эти 2 контакта поставлю перемычку, переразведу плату и буду использовать эту информацию что паяльник вставлен. Было бы здорово если у меня была бы 3-я рука. Но у меня её нет, я её кстати уже заказал, так что скоро будет. Будем выходить из ситуации подручными способами. Думаю, что штекер в разъёме держаться будет. Конечно, лучше поставить что-то с фиксацией.


Сейчас мы проверим, правильно ли я всё спаял. По идее центральный провод, должен идти сразу на корпус жала T12. Это сделано для того, чтобы любая статика, которая есть на жале — уходила в землю. Этот провод должен быть подключен к заземлению и любая статика (статический заряд) должна стекать на землю. Сделано для того, чтобы при пайке вы не убили дорогой компонент который боится статики. Сейчас очень мало компонентов которые очень сильно бояться статики, они сейчас все имеют определённые защиты, но в принципе, все они бояться в той или иной мере статики. По стандартам, сопротивление между корпусом жала и выводом заземления должно быть не больше 2 Ом, но конкретно для меня это не совсем хорошо. Объясню почему, если станция стоит на участке монтажа, где просто понтируют платы, то в этом нет ничего плохого, но я занимаюсь каким-то ремонтом, и теоретически, хотя это невозможно, но раз в год и палка стреляет, может случится так, что я одной рукой возьмусь за фазный провод, и по хорошему, если я нигде к заземлению не подключён, и ток по мне не потечёт, так как я в ботинках, не касаюсь никаких железных частей, и я останусь живой и всё со мной будет хорошо. Но теоретически я могу, держась за фазный провод, случайно дотронуться до жала паяльника или до корпуса. Если он будет наглухо заземлён — меня просто убьёт в такой ситуации. Конечно такая ситуация надумана, и ей в принципе быть не может, но … может. Поэтому я корпус подключу через резистор на 10 МОм уже к заземлению. Если я дотронусь, то ток потечёт через меня по этому резистору и всё буде со мной хорошо, меня не убьёт. В тоже время статический заряд будет стекать с жала через резистор. Убьём 2-х зайцев сразу. Проверим, что мы правильно припаяли. Сопротивление нагревателя должно быть 8-9 Ом. Как я уже говорил, здесь сам нагреватель включен последовательно с термопарой.


Мы сюда подаём питание когда хотим чтобы жало нагрелось и отсюда же снимаем информацию с термопары. Получается что в одном случае у нас термопара подключена последовательно с нагревателем, хотя она всегда подключена последовательно, и в одном случае когда мы подаём питание — термопара просто сваренные два метала, она просто как перемычка для постоянного тока, и жало у нас греется, когда мы уже снимаем показания, то мы питание на жало не подаём, сюда уже подключен вход операционного усилителя на который подаётся ЭДС которое генерирует термопара в жале. Естественно, оно подаётся через нагреватель, так как он подключён последовательно, но так как сопротивление нагревателя маленькое, токи входные операционного усилителя ещё меньше, какие-то микро-нано амперы, то ток в цепи течёт маленький и это сопротивление нагревателя которое составляет 8 Ом, оно вообще не оказывает (если придираться то оно оказывает), но фактически, влияние которое оно вносит — минимальны.
Сейчас, я хочу определить какое именно напряжение генерирует термопара, чтобы знать какой мне подключить операционный усилитель. Хватит ли 358 ОУ или нет? Я ещё уточню, но я на вскидку помню, что у него порог чувствительности около 2 или 3 мВ. Всё что ниже этого напряжения ОУ никак не почувствует. Пока на его входах до 3 мВ, то на выходе это никак не отразится, выход его никак не сдвинется с места. То, что больше 3 мВ, уже будет усиливаться и выход будет подниматься к плюсу или опускаться к нулю. То есть уже операционный усилитель будет чувствовать это. А то, что до 3 он не будет чувствовать. Сейчас я включу паяльник, нагрею его до 200 С, потом отключу питание и измерю напряжение которое генерирует термопара. Если оно при 200 градусах будет меньше 3-х мВ, то естественно что дешёвый, ширпотребный 358 ОУ я использовать не смогу, мне уже придётся использовать более лучший, более качественный с меньшим напряжением смещения, ну и естественно более дорогим усилителем, хотя конечно же не хотелось бы этого делать. Хочется сделать что-то доступное и простое.


Я планировал к жалу поставить термопару, сделать всё по науке, красиво, но дело в том, что термопара есть, а тестер который измеряет температуру по этой термопаре ушёл кому-то домой, временно что-то кому то нужно померить и его просто взяли. К сожалению точно всё измерить я не смогу, но у меня есть свинцовосодержащий припой, он плавится при температуре 180 С, есть канифоль, на которую я тоже могу посмотреть как она плавится. Я помню, как это всё происходит при нормальной температуре плавления. Я могу подобрать такое напряжение, при котором я увижу что припой плавится, по крайней мере только начинает плавится, не уверено плавится, а немного тянется. Это будет говорить о том, что температура сейчас около 200 С. В любом случае мне не нужно всё идеально точно, я не собираюсь составлять график зависимости напряжения от температуры. Мне всё это нужно примерно, приблизительно. Для того чтобы просто определить — могу я использовать 358 ОУ или нет? Включаем блок питания. Я на него поставил 8В., У меня садится батарейка тестера, я пока выключу его. Ну вот, как видите, припой не то что совсем расплавлен, но он течёт. Здесь около 200 С. Канифоль на нём бегает и прыгает.




Термопара генерирует 4 мВ. Всё ещё плавится, и припой тут тоже расплавлен. Сейчас на жале тоже около 200 С, так как припой расплавлен. Ну и видим что 3.4 мВ. Сейчас паяльник остывает и напряжение падает, так как и должно быть.


Термопара, то есть генерируемое ей напряжение имеет полярность. Имеет полюс и минус. В данном случае я измеряю напряжение и вижу, что у меня горит минус, это означает что я подключил щупы наоборот. Плюсовой должен быть здесь. Он идёт на крайний пин. Как вы помните этот крайний левый пин зелёный либо синий провод. Я также всё спаял как и было в оригинале, по крайней мере по сторонам всё раскидал. Крайний зелёный это будет плюс, это будет важно именно в схеме. Потому что если вы перепутаете полярность подключения термопары, ничего у вас работать не будет.


Теперь о том, что я хочу сделать за паяльную станцию, и какие у неё будут органы управления. Я хочу сделать обычную станцию без всяких цифровых индикаторов, без кнопочек. Дело в том, что я в последнее время очень много паял Pace, это обычная станция, ST-25, хотя у них есть ещё и ST-50, которая имеет цифровой индикатор, кнопки, но я паял ST-25 которая имеет просто «обычную крутилку». Дома я паял Lukey 702 который якобы с циферками, с кнопочками, крутой в общем. Но поверьте, на самом деле все эти циферки ни сколько не удобны. На много удобнее иметь именно крутилку. Цифры могут быть удобны если у вас есть несколько кнопочек памяти. к примеру 200 С, 250 С, 230 С, несколько кнопочек с фиксированными значениями которые под себя настроены. Но если у вас просто кнопочное управление, то есть больше и меньше температура и индикатор который что-то показывает, температуру естественно, но на моём Lukey показывается не температура в С, а температура в попугаях, потому что она даже рядом не находится по сравнению с тем, что сейчас на жале паяльника. На много удобнее, на много, именно резисторный регулятор. Вы, когда паяете, в любом случае никогда не ориентируетесь по тому, что где то написано что если хочешь паять это — поставь температуру жала на 270. Ты поставил и ты счастлив. Нет, такого нет. Всегда, когда кто-то паяет, он ориентируется не по циферкам, а по ощущениям. То есть если это опытный монтажник, он видит, что припой плохо течёт, желе подобный, он понимает что температура недостаточна, и он немного её повышает. Например на 5-10 С. Если он видит что уже у него перегревается, флюс быстро горит, то он понижает. Опять же инстинктивно, по своим собственным ощущениям на несколько градусов, и крутилка в этом плане на много удобнее. Если нужно сбросить 10 градусов, я чуть чуть, на пару градусов эту крутилку убрал, или наоборот поднял, то есть по часовой, против часовой, покрутил и у меня 10 градусов упали или набрались. На кнопочной, мне нужно 10 раз тыкать кнопку, потом что, если я нажму и буду держать, у меня 10-20 градусов сбросит, и мне потом, чтобы набрать 10 раз придётся тыкать. Крутилка поверьте на много удобнее. У меня будет крутилка, от 150 до 480 С, от крайнего до крайнего положения. Будет кнопочка турбо, и у меня будет индикатор светодиодный который будет индицировать нагрев. Включили паяльник, Он холодный и индикатор всегда горит, а как только выйдет на режим, индикатор будет загораться только в момент когда паяльник будет подаваться питание чтобы он нагрелся. Мигать должно.
Кнопку турбо я хочу сделать, так как нужно запаять более массивное, чем детали которые ты обычно паяешь, и для пайки необходимо поднять температуру на 10-20 С. Естественно ты её поднимаешь, ты всё запаял, потом её нужно понижать, иначе у тебя на жале начнёт выгорать флюс. Я хочу сделать кнопочку турбо, я перед тем как запаять что-то крупное, я нажал, и смысл этой кнопочки в том, что станция, относительно твоей выставленной температуры поднимет на 10 или 15 секунд температуру. Хотя думаю будет 20 сек. Вот эту температуру, на сколько именно поднимать, наверно я сделаю таким образом, что её можно будет задавать в настройках станции. Такая будет простая станция, если вы хотите что-то поменять либо у вас есть какие-то аргументы что то, что я делаю не совсем правильно, не будет удобно, обязательно об этом пишите, и я это учту. Так же я хочу сделать настройку и калибровку этой станции, у меня будет микроконтроллер всем управлять. Контроллер наверное будет AtTiny44 с АЦП. С термопары сигнал будет подаваться на ОУ, скорее всего это будет LM358, Дальше это напряжение будет масштабироваться до напряжения которое АЦП нормально обрабатывать, также с потенциометра на второй АЦП будет. И я уже при помощи микроконтроллера буду смотреть какое сейчас положение на потенциометре и сколько мне нужно держать температуру. Также будет скорее всего, так как у меня есть микроконтроллер, то я наверное уже и калибровку буду делать математикой в микроконтроллере. Калибровка скорее всего будет происходить следующим образом: нажимаешь кнопочку «Турбо» включаешь паяльную станцию, и станция должна зайти в режим калибровки. Дальше, в данном режиме вам нужно будет поставить термопару, и вращая потенциометр найти, точнее добиться того, чтобы на жале была температура 150 С, нажимаете кнопку «турбо», положение при котором 150 С запомнилось, дальше следующая точка, скорее будет 250 С, держите термопару, и регулируете до тех пор, тока у вас не будет 250 С на кончике жала. Снова нажимаете кнопку «турбо», у вас всё записалось, математикой будут сделаны расчёты по этой шкале таким образом, что у вас вся шкала от минимального положения к максимальному была от 150 до 480 С. Чтобы не вы подстроечными резисторами подстраивали, а всё делалось математикой. Естественно, если станция будет собрана правильно, номиналы резисторов будут верными, то в принципе в небольшом пределе всё это можно будет делать математикой. Естественно если вы с фонаря всё поставите, то уже не хватит диапазона для того чтобы вот так всё настроить. Опять же, как я уже сказал — если вы считаете что здесь что-то не правильно, не так, что-то не будет работать либо не интересно, обязательно об этом пишите, именно в комментариях именно к этому видео на youtube и будем общаться, будем смотреть, может быть что-то изменим. Пока я её ещё не разрабатывал, но уже следующее видео, которое будет — будет непосредственно сама разработка этой станции. Наверное, написание программы я не буду писать, так как это будет всё очень муторно, но наверное разработку схемы, наверное я всё же сниму. Я буду говорить свои комментарии, идеи, мысли, и может быть это будет кому то интересно. Опять же это паяльник, это не прецизионный прибор, не нужно чтобы он держал температуру к примеру выставили 220 С и всё, на жале ровно 220 С. Вы крутите потенциометр и вы выставляете не температуру которая будет указана на шкале, а температуру по которой вы ориентируетесь. Это мне упростит схему. То есть для того чтобы с термопары точно измерять температуру, нужно либо второй конец термопары охладить до ровно 0 С, либо сделать компенсацию холодного жала, что очень усложняет схемотехнику данного устройства. И я не хочу её делать сложную, так как для паяльника в этом нет необходимости. Зачем нам иметь с точностью пару градусов измерения? Они нам просто не нужны. Если будут если будет +-10С, то ничего в этом страшного не будет. Я имею ввиду если температура жала будет расходиться с температурой которую вы выставили на циферблате. Самое главное для паяльника, чтобы он выставленную температуру держал с небольшими изменениями и как как только вы что-то паяете, подносите к нему что-то что отнимает много тепла, чтобы он не проваливал температуру, а пытался её как-то удержать, то есть компенсировал провал температуры. Это главное для паяльника. А если на станции выставлено 230 на на жале 250 градусов или 200, то в этом ничего страшного лично для меня нет.
Видео и так уже получилось достаточно долгим, поэтому я на этом заканчиваю, сейчас я уже второй свой паяльник подготовлю, поменяю на нём штекер, всем вам спасибо за внимание, как я уж сказал — обязательно пишите свои рассуждения к данному ролику, если вам конечно это всё интересно. Всем пока, удачи вам!

Доброго вам времени суток, уважаемые гики и сочувствующие! Вчитайтесь внимательно в эти строки великого поэта:

Я знал одной лишь думы власть,
Одну, но пламенную страсть:
Она, как червь, во мне жила.
Изгрызла душу и сожгла!
Михаил Юрьевич смог точно описать душевные терзания, обуревающие множество радиолюбителей в поисках мощной, полностью автоматической, точной, универсальной, надёжной и недорогой паяльной станции.

Благодаря трудолюбивым китайским товарищам, вышеописанная (как, впрочем, и множество других) мечта вполне может стать явью при относительно небольших финансовых затратах. Речь пойдёт о наборе для сборки паяльной станции на жалах Hakko T12. Этот набор стоит менее 18 евро на Aliexpress и содержит все необходимые детали, кроме блока питания и корпуса. В сети можно найти множество обзоров этого набора.

Компактный стоваттный (на самом деле, нет) блок питания на 24 вольта стоит около 8 евро с пересылкой.

Проблема этого блока питания в значительном нагреве при нагрузке более 75 ватт. Поскольку паяльная станция потребляет значительно меньшую мощность, этот блок питания можно с чистой совестью считать подходящим кандидатом.

Перейдём к корпусу: именно здесь открывается максимальный простор для творчества и кроются значительные трудности для радиолюбителей, не имеющих 3D принтера в личном пользовании. Как известно, дом поросёнка должен быть крепостью корпус электронного устройства служит не только вместилищем его компонентов, но и предупреждает попадание внутрь посторонних предметов. Корпус также защищает пользователя от поражения током. Если же корпус паяльной станции имеет возможность установки держателя паяльника, „третьей руки“, лупы с подсветкой и возможности размещения губки для очистки жала, то это уже не корпус, а дворец.

Некоторые из вышеупомянутых частей объединило в себе следующее замечательное устройство:

Единственной проблемой этого устройства является тонкий и плохо проложенный кабель для питания светодиодной подсветки. Этот кабель лучше всего сразу заменить. Поскольку светодиодная подсветка требует источника питания 5 вольт, нам придётся приобрести также преобразователь напряжения с 24 до 5 вольт. Китайские товарищи расстаются с нужным устройством за символические 1,8 евро.

Обратите внимание: этот прреобразователь построен на основе микросхемы XL4015. Несмотря на заявленный выходной ток 5 ампер, этот преобразователь работает без перегрева только при токе менее 2,3 ампера. Поскольку в этом преобразователе реализована регулировка выходного тока, для надёжной работы можно просто установить максимальный ток на уровне 2,2 ампера и забыть о проблеме.

Как известно, нет такого тюбика с зубной пастой, откуда нельзя было бы выжать ещё капельку. Это высоконаучное наблюдение натолкнуло меня на мысль вывести полученные напряжения 24 и 5 вольт на наружные клеммы и использовать паяльную станцию как блок питания. Естественно, два разъёма USB так и просились на переднюю панель. Немцы называют это «Eierlegende Wollmilchsau» (яйцекладущая щерстомолочная свинья).

Осталось приобрести кабель питания с резиновой изоляцией (мягкий и не плавится), сетевой выключатель со световой индикацией, немного монтажного провода в силиконовой изоляции (мягкий и не плавится), пару разъёмов USB, четырёхконтактный клеммник (такие используются для подключения акустических систем), 20 саморезов М3 и 8 саморезов М2.

Высокую честь изготовления корпуса заслужил мой домашний 3D принтер fakeQR. Материалом для корпуса был выбран филамент PETG китайского производителя Winbo (китайское с китайским в китайском, то ли ещё будет). PETG имеет массу преимуществ перед другими материалами: отличное межслоевое сцепление, никакого варпинга („съёживания“) при печати больших объектов, высокая прочность и устойчивость к факторам внешней среды. Из этого материала изготовлены, например, бутылки Кока-колы.

После короткой возни в замечательном бесплатном CAD DesignSpark Mechanical были созданы части будущего мегакорпуса суперпаяльной мегастанции.

Фронтальная панель. Служит для фиксации электронного блока управления паяльной станции на основной части корпуса

Основная часть. К ней прикручиваются все остальные части корпуса и электронные компоненты.

На передней стенке основной части расположены следующие элементы: два гнезда USB. выключатель питания (выключатели на задней панели являются чем-то вроде преступления против человечества, по моему мнению), ушки для закрепления фронтальной панели с электронным блоком. На задней стенке находится карман для преобразователя напряжения и вентиляционные отверстия. Отверстие для кабеля питания снаружи имеет воронкообразную форму, для предотвращения излома кабеля. Блок питания располагается на на некоторой высоте от нижней стенки, чтобы обеспечить свободный доступ воздуха через нижние вентиляционные отверстия.

Крышка отсека электроники выпонена в виде ванночки, в которой можно складывать разную мелочь. Корпус выполнен так, что ни капли олова, ни какие-либо мелкие предметы не могут попасть в отсек электроники.

Нижняя часть и выдвижной ящичек. На внутренней стороне задней стенки нижней части расположен кармашек для магнита, в соответствующем месте ящичка предусмотренно отверстие для винта из магнитного материала. Удержание ящичка магнитом – дешёвое, надёжное и простое решение, по моему мнению.

После сборки паяльная станция выглядит в точности как ёжик из известной сказки Ушинского. (зверёк был „неладно скроен, да крепко сшит“ и тем многих бед избегал).

Уже после сборки первого варианта 3D модели были исправлены, доработаны и упрощены, скачать их можно